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Abstract

The paper deals with some extensions of the Keller-Dykhne duality relations arising in the
classical homogenization of two-dimensional uniformly bounded conductivities, to the case of high-
contrast conductivities. Only assuming a L1-bound on the conductivity we prove that the conduc-
tivity and its dual converge respectively, in a suitable sense, to the homogenized conductivity and
its dual. In the periodic case a similar duality result is obtained under a less restrictive assumption.

1 Introduction

The homogenization of elliptic partial differential equations has had an important development for
nearly forty years. During the seventies, the G-convergence of Spagnolo [24], and the H-convergence
of Murat, Tartar [25], [23], as well as the study of periodic structures by Bensoussan, Lions, Papan-
icolaou [4] (see also [15]), laid the foundations of the homogenization theory in conduction problems
with uniformly bounded (both from below and above) conductivities.

The boundedness assumption implies some compactness which preserves the nature of the homog-
enized problem. This is no more the case for high-contrast conductivities. Indeed, Khruslov was one
of the first to derive vector-valued homogenized problems in the case of low conductivities [17], as
well as nonlocal homogenized ones in the case of high conductivities [12] (see also [18] and [19] for
various types of homogenized problems and complete references). In the case of high conductivities,
the appearance of nonlocal effects is strongly linked to the dimension greater than two. So, the model
example of nonlocal homogenization [12] in conduction is obtained from a three-dimensional homoge-
neous medium reinforced by highly conducting thin fibers which create a capacitary effect (see also [3],
[6] and [10] for extensions and alternative methods).

Recently, Casado-Dı́az and the first author proved in [5], [8], [9], that dimension two, contrary to
dimension three or greater, induces an extra compactness which prevents from the nonlocal effects.
In particular, an extension of the H-convergence is obtained in [8] for conductivities which are only
bounded in L1 but not in L∞.

The present paper deals with the duality relations arising in the two-dimensional homogenization.
These relations were first noted by Keller [16] who obtained an interchange equality relating the
effective properties of a two-phase composite when the conductivities are swapped. Following the
pioneer work of Keller, Dykhne [11] (see also [21] and [13] for a more general approach) proved that,
for any periodic, coercive and bounded matrix-valued function A, the homogenized matrix associated
with the dual conductivity AT / det A (where AT denotes the transposed of A) is equal to AT

∗ / det A∗,
where A∗ is the constant homogenized matrix associated with A. We refer to Chapters 3, 4 of [22] for
a general presentation of the duality transformations.

Our contribution is the extension of the Dykhne duality relation to high-contrast two-dimensional
conductivities. More precisely, consider an equicoercive sequence An of (not necessarily symmetric)
conductivity matrices, which is not uniformly bounded contrary to the classical case. Under the main
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assumption that

det An

det As
n

|As
n| weakly-∗ converges in the sense of the Radon measures to a bounded function, (1.1)

(where As
n denotes the symmetrized of An), we prove (see Theorem 2.2) that the sequence AT

n/ det An

“H-converges” to AT
∗ / det A∗, when An “H-converges” to A∗, for suitable extensions of the H-

convergence (see Definition 2.1). As a consequence, we obtain (see Corollary 2.4) a compactness
result for the opposite case of a uniformly bounded but not equicoercive sequence of conductivity
matrices. We also prove a refinement (see Theorem 2.7) in the periodic case, i.e. An(x) := A]

n( x
εn

)
where A]

n is Y -periodic and εn > 0 tends to 0, under the less restrictive assumption than (1.1)

ε2
n

∫
Y

det A]
n

det(A]
n)s

∣∣(A]
n)s
∣∣ dy −→

n→+∞
0. (1.2)

The paper is organized as follows. In Section 2, we define some appropriate notions of H-
convergence and we state the main duality results for high-contrast conductivities, both in the non-
periodic and periodic framework. Section 3 is devoted to the proof of the homogenization results.

Notations

• Ω denotes a bounded open subset of R2;

• I denotes the unit matrix in R2×2, and J the rotation matrix of angle 90◦;

• for any matrix A in R2×2, AT denotes the transposed of the matrix A, As denotes its symmetric
part in such a way that A = As + aJ , where a ∈ R;

• for any matrices A,B ∈ R2×2 (even non-symmetric), A ≤ B means that As ≤ Bs, i.e., for
any ξ ∈ R2, Aξ · ξ ≤ Bξ · ξ;

• | · | denotes both the euclidian norm in Rd and the subordinate norm in R2×2, i.e., for any A ∈
R2×2, |A| := sup {|Ax| : |x| = 1}, which agrees with the spectral radius of A if A is symmetric;

• for any α, β > 0 , M(α, β; Ω) denotes the set of the matrix-valued functions A : Ω −→ R2×2

such that

∀ ξ ∈ R2, A(x)ξ · ξ ≥ α |ξ|2 and A−1(x)ξ · ξ ≥ β−1 |ξ|2, a.e. x ∈ Ω; (1.3)

• for Y := (0, 1)2 and for V := Lp,W 1,p, V#(Y ) denotes the Y -periodic functions which belong
to Vloc(R2);

• for any locally compact subset X of R2, M(X) denotes the space of the Radon measures defined
on X;

• c denotes a constant which may vary form a line to another one.

2 Statement of the results

2.1 The general case

We consider a sequence of two-dimensional conduction problems in which the conductivity matrix-
valued is either not uniformly bounded from above or (exclusively) not equicoercive. As a consequence,
either the associated flux is not bounded in L2 or the associated potential is not bounded in H1. To
take into account these two degenerate cases we extend the definition of the classical Murat-Tartar
H-convergence (see [23]) by the following way:
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Definition 2.1. Let αn and βn be two sequences of positive numbers such that αn ≤ βn, and let An

be a sequence of matrix-valued functions in M(αn, βn; Ω) (see (1.3)).

• The sequence An is said to H(M(Ω)2)-converge to the matrix-valued function A∗ ∈ M(α, β; Ω),
with 0 < α ≤ β, if for any distribution f in H−1(Ω), the solution un of the problem{

−div (An∇un) = f in Ω

un = 0 on ∂Ω,
(2.1)

satisfies the convergences

un −⇀ u weakly in H1
0 (Ω) and An∇un −⇀ A∗∇u weakly-∗ in M(Ω)2, (2.2)

where u is the solution of the problem{
−div (A∗∇u) = f in Ω

u = 0 on ∂Ω.
(2.3)

We denote this convergence by An

H(M(Ω)2)
−⇀ A∗.

• The sequence An is said to H(L2(Ω)2)-converge to the matrix-valued function A∗ ∈ M(α, β; Ω),
with 0 < α ≤ β, if for any function f in L2(Ω), the solution un of (2.1) satisfies the convergences{

un −⇀ u weakly in L2(Ω)

un −→ u strongly in L2
loc(Ω)

and An∇un −⇀ A∗∇u weakly in L2(Ω)2, (2.4)

where u is the solution of (2.3). We denote this convergence by An

H(L2(Ω)2)
−⇀ A∗.

The main result of the paper is the following:

Theorem 2.2. Let Ω be a bounded open set of R2 such that |∂Ω| = 0. Let α > 0, let βn, n ∈ N, be a
sequence of real numbers such that βn ≥ α, and let An be a sequence of matrix-valued functions (not
necessarily symmetric) in M(α, βn; Ω).
i) Assume that there exists a function a ∈ L∞(Ω) such that

det An

det As
n

|As
n| −⇀ a weakly-∗ in M(Ω̄). (2.5)

Then, there exists a subsequence of n, still denoted by n, and a matrix-valued function A∗ in M(α, β; Ω),
with β = 2 ‖a‖L∞(Ω), such that

An

H(M(Ω)2)
−⇀ A∗ and AT

n

H(M(Ω)2)
−⇀ AT

∗ . (2.6)

ii) In addition to the assumptions of i), assume that there exists a constant C0 > 0 such that, for
any n ∈ N,

det An

det As
n

As
n ≤ C0 AnAT

n , a.e. in Ω. (2.7)

Then, we have
AT

n

det An

H(L2(Ω)2)
−⇀ AT

∗
det A∗

. (2.8)
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Remark 2.3. The part i) is a two-dimensional extension of the H-convergence for unbounded se-
quences of equicoercive matrix-valued functions. It was first proved in [8] under the following assump-
tion: there exists a constant γ > 0 and ā ∈ L∞(Ω) such that An = As

n + anJ satisfies

|an| ≤ γ As
n and |As

n| −⇀ ā weakly-∗ in M(Ω̄). (2.9)

Assumption (2.9) is more restrictive than (2.5) since

det An

det As
n

|As
n| =

(
1 +

a2
n

det As
n

)
|As

n| ≤ (1 + γ2) |As
n|

which converges to a bounded function in the weak-∗ sense of the measures on Ω̄, hence conver-
gence (2.5). The proof of (2.6) is quite similar to the one in [8] up to a few extra computations
(see [20] for details).

On the contrary, the part ii) of Theorem 2.2 is a new result which extends the duality result
obtained by Dykhne [11] for periodic and uniformly bounded conductivities to non-periodic and non-
uniformly bounded ones. Condition (2.7) is a technical assumption we need in the non-symmetric case.
Indeed, (2.7) clearly holds with C0 = α−1, if An ≥ αI is symmetric. It also holds if An = αnI + anJ
(i.e. As

n is isotropic) with αn ≥ α, since

det An

det As
n

As
n =

(
α2

n + a2
n

αn

)
I ≤

(
α2

n + a2
n

α

)
I = α−1 AnAT

n .

Part ii) will be proved in Section 3.

Theorem 2.2 implies the following H-convergence result for uniformly bounded sequences of matrix-
valued functions which are not equicoercive:

Corollary 2.4. Let Ω be a bounded open set of R2 such that |∂Ω| = 0. Let β > 0 and let αn be
a sequence of real numbers such that 0 < αn ≤ β. Let Bn be a sequence of matrix-valued functions
in M(αn, β; Ω). Assume that there exist a function a in L∞(Ω) such that∣∣(Bs

n)−1
∣∣ −⇀ a weakly-∗ in M(Ω̄), (2.10)

and a constant C0 > 0 such that, for any n ∈ N,

BT
n Bn ≤ C0 Bs

n, a.e. in Ω. (2.11)

Then, there exists a subsequence of n, still denoted by n, and a matrix-valued function B∗ in M(α, β; Ω),
with α =

(
2 ‖a‖L∞(Ω)

)−1, such that

Bn

H(L2(Ω)2)
−⇀ B∗. (2.12)

Proof. The sequence An defined by

An :=
BT

n

det Bn
= J−1B−1

n J,

satisfies the inequality An ≥ β−1I. Inequality (2.7) is a consequence of (2.11) since Bn = J−1A−1
n J

and
AnAT

n = J−1(BT
n Bn)−1J ≥ C−1

0 J−1(Bs
n)−1J = C−1

0

Bs
n

det Bs
n

= C−1
0

det An

det As
n

As
n. (2.13)

Moreover, convergence (2.5) is a consequence of (2.10) since

∣∣(Bs
n)−1

∣∣ = ∣∣J−1(Bs
n)−1J

∣∣ = ∣∣∣∣ Bs
n

det Bs
n

∣∣∣∣ = det An

det As
n

|As
n|. (2.14)
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Then, by the part i) of Theorem 2.2, the sequence An (up to a subsequence) H(M(Ω)2)-converges
to some A∗ in M

(
β−1, 2 ‖a‖L∞(Ω); Ω

)
. Therefore, by the part ii) of Theorem 2.2, Bn H(L2(Ω)2)-

converges to the matrix-valued function

B∗ :=
AT
∗

det A∗
= J−1A−1

∗ J.

The matrix-valued function B∗ clearly belongs to the set M(α, β; Ω), with α :=
(
2 ‖a‖L∞(Ω)

)−1, which
concludes the proof.

2.2 The periodic case

In this section we consider the case of highly oscillating sequences of conductivity matrices. Let Ω be
a bounded open subset of R2, and let Y := (0, 1)2 be the unit square of R2. Let A]

n be a sequence of
Y -periodic matrix-valued functions in L∞# (R2)2×2, and let εn be a sequence of positive numbers which

tends to 0. We define the highly oscillating sequence associated with A]
n and εn by

An(x) := A]
n

(
x

εn

)
, for a.e. x ∈ Ω. (2.15)

For a fixed n ∈ N, let A∗
n be the constant matrix defined by

A∗
nλ :=

∫
Y

A]
n∇W λ

n dy, (2.16)

where W λ
n , for λ ∈ R2, is the unique solution in H1

loc(R2) of the problem div
(
A]

n∇W λ
n

)
= 0 in R2

W λ
n (y)− λ · y is Y -periodic, with zero Y -average.

(2.17)

Note that A∗
n is the H-limit of the oscillating sequence A]

n(x
ε ) as ε tends to 0 (see e.g. the periodic

homogenization in [4]). Under the periodicity assumption (2.15) we can improve Theorem 2.2. To
this end, we need a more general definition of H-convergence than the one of Definition 2.1:

Definition 2.5. Let αn and βn be two sequences of positive numbers such that αn ≤ βn, and let An

be a sequence of matrix-valued functions in M(αn, βn; Ω).

• The sequence An is said to Hs-converge to the matrix-valued function A∗ ∈ M(α, β; Ω), with
0 < α ≤ β, if for any function f in L2(Ω), the solution un of problem (2.1) strongly converges
in L2(Ω) to the solution u of problem (2.3).

We denote this convergence by An

Hs

−⇀ A∗.

• The sequence An is said to Hw-converge to the matrix-valued function A∗ ∈ M(α, β; Ω), with
0 < α ≤ β, if for any function f in L2(Ω), the solution un of problem (2.1) weakly converges
in L2(Ω) to the solution u of problem (2.3) and the flux An∇un weakly converges to A∗∇u
in L2(Ω)2.

We denote this convergence by An

Hw

−⇀ A∗.

Remark 2.6. In the part i) of Definition 2.5 we have the strong convergence of the potential but not
the convergence of the flux. This corresponds to the case of an equicoercive sequence of conductivity
matrices without control from above. In the part ii) we have the weak convergence of both the
potential and the flux. This corresponds to the case of a uniformly bounded sequence of conductivity
matrices without control from below.

We have the following periodic homogenization result:

5



Theorem 2.7. Let α > 0 and let βn be a sequence of real numbers such that βn ≥ α. Let A]
n be

a sequence of Y -periodic matrix-valued functions (not necessarily symmetric) in M(α, βn; R2), and
let An be the highly oscillating sequence associated with A]

n by (2.15).
i) Assume that the sequence A∗

n defined by (2.16) converges to A∗ in R2×2, and that the following limit
holds

ε2
n

∫
Y

det A]
n

det(A]
n)s

∣∣(A]
n)s
∣∣ dy −→

n→+∞
0. (2.18)

Then, we have

An

Hs

−⇀ A∗. (2.19)

ii) In addition to the assumptions of i) assume that An and AT
n satisfy inequality (2.7), and that

the solution un of (2.1), with the matrix AT
n/ det An, is bounded in L2(Ω) for any right-hand side f

in L2(Ω). Then, we have
AT

n

det An

Hw

−⇀ AT
∗

det A∗
. (2.20)

Remark 2.8. In the part i) of Theorem 2.7, taking into account the periodicity (2.15) conver-
gence (2.5) is equivalent to the L1(Y )-boundedness∫

Y

det A]
n

det(A]
n)s

∣∣(A]
n)s
∣∣ dy ≤ c,

which is clearly more restrictive than condition (2.18). The price to pay is that the sequence An∇un

is not necessarily bounded in L1(Ω)2.
In the part ii) of Theorem 2.7 we have to assume the L2(Ω)-boundedness of any solution of (2.1)

with conductivity matrix AT
n/ det An, since condition (2.18) does not imply it. To this end, it is

sufficient to assume the existence of a constant C > 0 such that, for any n ∈ N,

∀u ∈ H1
0 (Ω),

∫
Ω

u2 dx ≤ C

∫
Ω

An

det An
∇u · ∇u dx. (2.21)

Example 2.9. Let E be a Y -periodic connected open set of R2, with a Lipschitz boundary, such that
|Y ∩ E| > 0. Consider a Y -periodic symmetric matrix-valued function A]

n such that

A]
n

det A]
n

≥ I a.e. in E and
A]

n

det A]
n

≥ ε2
n I a.e. in R2 \ E,

or equivalently
A]

n ≤ I a.e. in E and A]
n ≤ ε−2

n I a.e. in R2 \ E.

Then, the highly oscillating sequence An defined by (2.15) satisfies the Poincaré inequality (2.21) (see
e.g. [2] for the derivation of a similar estimate). The proof of (2.21) is based on the extension property
established in [1] (see [20] for more details).

3 Proof of the results

3.1 Proof of Theorem 2.2

Taking into account Remark 2.3 we focus on the part ii) of Theorem 2.2. Consider a sequence An

in M(α, βn; Ω) which satisfies convergence (2.5) and H(M(Ω)2)-converges to A∗ in M(α, β; Ω), with
0 < α ≤ β, and set Bn := J−1A−1

n J . Let f ∈ L2(Ω) and let vn be the solution of the conduction
problem (2.1) with conductivity matrix Bn. The proof of the H(L2(Ω)2)-convergence (2.8) is divided
into two steps. In the first step, we prove that the sequence vn strongly converges in L2

loc(Ω) to some
v ∈ H1

0 (Ω), and that the flux Bn∇vn weakly converges to some ξ in L2(Ω). The second step is devoted
to the determination of the limit ξ in order to establish convergence (2.8).
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First step : Convergences of the sequences vn and Bn∇vn.
Putting the function vn ∈ H1

0 (Ω) as test function in the equation −div (Bn∇vn) = f , we obtain by
the Sobolev embedding of W 1,1(Ω) into L2(Ω) combined with the Poincaré inequality∫

Ω
Bn∇vn · ∇vn dx =

∫
Ω

f vn dx ≤ ‖f‖L2(Ω) ‖vn‖L2(Ω) ≤ c

∫
Ω
|∇vn| dx. (3.1)

Moreover, by the Cauchy-Schwarz inequality combined with (2.14) we have∫
Ω
|∇vn| dx ≤

∫
Ω

∣∣(Bs
n)−

1
2

∣∣ ∣∣(Bs
n)

1
2∇vn

∣∣ dx

≤
(∫

Ω

∣∣(Bs
n)−1

∣∣ dx

) 1
2
(∫

Ω
Bs

n∇vn · ∇vn dx

) 1
2

=
(∫

Ω

det An

det As
n

|As
n| dx

) 1
2
(∫

Ω
Bn∇vn · ∇vn dx

) 1
2

.

Then, we deduce from the previous inequalities and (2.5) that∫
Ω

Bn∇vn · ∇vn dx ≤ c

(∫
Ω

Bn∇vn · ∇vn dx

) 1
2

. (3.2)

Therefore, the sequences Bn∇vn ·∇vn and |∇vn| are bounded in L1(Ω), hence vn is bounded in L2(Ω)
by (3.1). On the other hand, similarly to (2.13) inequality (2.7) implies that BT

n Bn ≤ C0 Bs
n and

|Bn∇vn|2 = (BT
n Bn)∇vn · ∇vn ≤ C0 Bs

n∇vn · ∇vn = C0 Bn∇vn · ∇vn,

hence the sequence Bn∇vn is also bounded in L2(Ω). Therefore, up to a subsequence vn weakly
converges to v in L2(Ω) and Bn∇vn weakly converges to ξ in L2(Ω)2.

The strong convergence of vn in L2
loc(Ω) is a consequence of the following result which is proved

in [8] (see the steps 3, 4 of the proof of Theorem 2.1 in [8], as well as the first step of Theorem 2.7 i),
which uses similar arguments adapted to condition (2.18)):

Lemma 3.1. Let Sn be a sequence of symmetric matrix-valued functions in L∞(Ω)2×2 such that there
exist α > 0 and a ∈ L∞(Ω) satisfying

Sn ≥ α I and |Sn| −⇀ a weakly-∗ in M(Ω). (3.3)

Let vn be a sequence in H1(Ω) satisfying

vn −⇀ v weakly in L2(Ω) and
∫

Ω
S−1

n ∇vn · ∇vn dx ≤ c. (3.4)

Then, the sequence vn strongly converges to v in L2
loc(Ω).

Set Sn := (Bs
n)−1. Since An ≥ α I, we have |Bs

n| ≤ |Bn| = |A−1
n | ≤ α−1, hence Bs

n ≤ α−1I and
Sn ≥ α I. Moreover, by (2.5) and (2.14) Sn satisfies the weak convergence of (3.3), and by (3.2) vn

satisfies (3.4). Lemma 3.1 thus implies that vn strongly converges to v in L2
loc(Ω).

It remains to prove that v belongs to H1
0 (Ω). Let Φ ∈ C1(Ω̄)2. Using successively the Cauchy-

Schwarz inequality and (3.2) we have∣∣∣∣ ∫
Ω

vn div Φ dx

∣∣∣∣ =
∣∣∣∣ ∫

Ω
Φ · ∇vn dx

∣∣∣∣ = ∣∣∣∣ ∫
Ω
(Bs

n)−
1
2 Φ · (Bs

n)
1
2∇vn dx

∣∣∣∣
≤
(∫

Ω

∣∣(Bs
n)−1

∣∣ |Φ|2 dx

) 1
2
(∫

Ω
Bn∇vn · ∇vn dx

) 1
2

≤ c

(∫
Ω

∣∣(Bs
n)−1

∣∣ |Φ|2 dx

) 1
2

.
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Therefore, passing to the limit in the previous inequality thanks to the weak convergence of vn, to
equality (2.14) and to convergence (2.5), we get∣∣∣∣ ∫

Ω
v div Φ dx

∣∣∣∣ ≤ c ‖a‖
1
2

L∞(Ω) ‖Φ‖L2(Ω)2 , for any Φ ∈ C1(Ω̄)2,

which implies that v belongs to H1
0 (Ω).

Second step : Determination of the limit ξ of Bn∇vn.
Let λ ∈ R2, θ ∈ C1

c (Ω), and let wλ
n be the solution of the problem{

div
(
AT

n∇wλ
n

)
= div

(
AT
∗∇(θ λ · x)

)
in Ω

wλ
n = 0 on ∂Ω.

(3.5)

By (2.6) and by virtue of Definition 2.1 we have the following convergences

wλ
n −⇀ θ λ · x weakly in H1

0 (Ω) and AT
n∇wλ

n −⇀ AT
∗∇(θ λ · x) weakly-∗ in M(Ω)2. (3.6)

Now, we will pass to the limit in the product Bn∇vn · JAT
n∇wλ

n by two different ways, which will give
the desired limit ξ.

On the one hand, since Bn = J−1A−1
n J and J2 = −I, we have

Bn∇vn · JAT
n∇wλ

n = −A−1
n J∇vn ·AT

n∇wλ
n = −J∇vn · ∇wλ

n = ∇vn · J∇wλ
n.

Moreover, since J∇wλ
n is divergence free, we have ∇vn · J∇wλ

n = div
(
vn J∇wλ

n

)
. Then, since vn

strongly converges to v in L2
loc(Ω) and ∇wλ

n weakly converges to ∇(θ λ · x) in L2(Ω)2 by (3.6), the
sequence vn J∇wλ

n converges to v J∇(θ λ · x) in L1
loc(Ω). Therefore, we obtain the first convergence

Bn∇vn · JAT
n∇wλ

n −⇀ div (v J∇(θ λ · x)) = ∇v · J∇(θ λ · x) in D′(Ω). (3.7)

On the other hand, consider a regular simply connected open subset ω of Ω. Since by definition (3.5)
AT

n∇wλ
n − AT

∗∇(θ λ · x) is a divergence free function in L2(ω)2, there exists a stream function (see
e.g. [14]) w̃λ

n in H1(ω) uniquely defined by∫
ω

w̃λ
n dx = 0 and AT

n∇wλ
n −AT

∗∇(θ λ · x) = J∇w̃λ
n. (3.8)

Since AT
n∇wλ

n is bounded in L1(Ω)2 by (3.6) and w̃λ
n has a zero ω-average, the Sobolev imbedding

of W 1,1(ω) into L2(ω) combined with the Poincaré-Wirtinger inequality in ω implies that w̃λ
n is bounded

in L2(ω) and thus converges, up to a subsequence, to a function w̃λ in L2(ω). Moreover, by the
Cauchy-Schwarz inequality and (3.5) we have, with Bn = J−1A−1

n J ,∫
ω

Bs
n∇w̃λ

n · ∇w̃λ
n dx =

∫
ω

(
A−1

n

)s
J∇w̃λ

n · J∇w̃λ
n dx

=
∫

ω

(
A−1

n

)s [
AT

n∇wλ
n −AT

∗∇(θ λ · x)
]
·
[
AT

n∇wλ
n −AT

∗∇(θ λ · x)
]
dx

≤ 2
∫

ω

(
A−1

n

)s
AT

n∇wλ
n ·AT

n∇wλ
n +

(
A−1

n

)s
AT
∗∇(θ λ · x) ·AT

∗∇(θ λ · x) dx

≤ 2
∫

Ω
AT

n∇wλ
n · ∇wλ

n + A−1
n AT

∗∇(θ λ · x) ·AT
∗∇(θ λ · x) dx

= 2
∫

Ω
AT
∗∇(θ λ · x) · ∇wλ

n + A−1
n AT

∗∇(θ λ · x) ·AT
∗∇(θ λ · x) dx.

The last term is bounded by (3.6) and by the inequality |A−1
n | ≤ α−1. Therefore, the sequences

vn := w̃λ
n and Sn = (Bs

n)−1 of the first step satisfy the assumptions (3.3) and (3.4) of Lemma 3.1
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in ω, hence w̃λ
n strongly converges to w̃λ in L2

loc(ω). Moreover, the second convergence of (3.6) and
definition (3.8) imply that w̃λ has a zero ω-average and ∇w̃λ = 0 in D′(ω), hence w̃λ = 0 by the
connectedness of ω. Therefore, by the uniqueness of the limit we get for the whole sequence

w̃λ
n −→ 0 strongly in L2

loc(ω). (3.9)

By (3.8) we have

Bn∇vn · JAT
n∇wλ

n = Bn∇vn · JAT
∗∇(θ λ · x)−Bn∇vn · ∇w̃λ

n.

Clearly, the sequence Bn∇vn ·JAT
∗∇(θ λ ·x) weakly converges to ξ ·JAT

∗∇(θ λ ·x) in L2(ω)2. Moreover,
the strong convergence (3.9) implies that

Bn∇vn · ∇w̃λ
n = div

(
w̃λ

n Bn∇vn

)
+ w̃λ

n f −⇀ 0 in D′(ω).

Therefore, we obtain

Bn∇vn · JAT
n∇wλ

n −⇀ ξ · JAT
∗∇(θ λ · x) in D′(ω).

This combined with (3.7) yields

∇v · J∇(θ λ · x) = ξ · JAT
∗∇(θ λ · x) a.e. in ω.

Now, choose θ ∈ C1
c (Ω) such that θ = 1 in ω in the former equality. Therefore, due to the arbitrariness

of λ and ω we get the equality J∇v = A∗Jξ a.e. in Ω, hence ξ = J−1A−1
∗ J∇v = B∗∇v a.e. in Ω,

which concludes the proof.

3.2 Proof of Theorem 2.7

Proof of the part i) of Theorem 2.7. The proof is similar to the one of the compactness result
in [5]. But there are extra difficulties since the conductivity matrices are not symmetric and the fluxes
are not necessarily bounded in L1(Ω), due to the condition (2.18). We will give the main steps of the
proof pointing out these difficulties.

Let un be the solution of the conduction problem (2.1), where An is the highly ocillating se-
quence (2.15). Let λ ∈ R2, and let V λ

n be the unique solution of problem (2.17) with the matrix-valued
function (A]

n)T . Note that the matrix A∗
n defined by (2.16) and V λ

n satisfy the relation

(A∗
n)T λ =

∫
Y

(A]
n)T∇V λ

n dy and (A∗
n)T λ · λ =

∫
Y

(A]
n)T∇V λ

n · ∇V λ
n dy ≤ c |λ|2. (3.10)

Set vλ
n(x) := εnV λ

n ( x
εn

) and zλ
n(x) := vλ

n(x) − λ · x. Note that the second estimate of (3.10) and the
α-coerciveness of A]

n imply that the sequence (V λ
n − λ · y) is bounded in H1

#(Y ), hence

zλ
n −⇀ 0 weakly in H1(Ω). (3.11)

To prove the Hs-convergence (2.19) it is enough to prove that

An∇un −⇀ A∗∇u in D′(Ω),

where A∗ is the limit of A∗
n in R2×2, and u is the weak limit of un in H1

0 (Ω). To this end, we proceed
in two steps. In the first step, we prove the convergence

An∇un · ∇vλ
n −An∇un · λ −⇀ 0 in D′(Ω), (3.12)

and in the second one, the convergence

An∇un · ∇vλ
n −A∗∇u · λ −⇀ 0 in D′(Ω). (3.13)
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First step : Proof of (3.12).
Let ω be a regular simply connected subset of Ω, let v ∈ H1

0 (Ω) be the solution of −∆v = f , and
consider the stream function ũn ∈ W 1,1(ω) defined by∫

ω
ũn dx = 0 and An∇un −∇v = J∇ũn a.e. in ω. (3.14)

Set Ãn := J−1
(
A−1

n

)s
J and Ã]

n := J−1
[
(A]

n)−1
]s

J . Using successively the Poincaré-Wirtinger in-
equality in ω, the Cauchy-Schwarz inequality, equality (2.14), estimate (2.18) and |A−1

n | ≤ α−1, we
have ∫

ω
|ũn| dx ≤ c

∫
ω
|∇ũn| dx

≤ c

(∫
ω

∣∣Ã−1
n

∣∣ dx

) 1
2
(∫

ω
Ãn∇ũn · ∇ũn dx

) 1
2

≤ c

(∫
Y

∣∣(Ã]
n)−1

∣∣ dy

) 1
2
(∫

ω
Ãn∇ũn · ∇ũn dx

) 1
2

≤ c

(∫
Y

det A]
n

det(A]
n)s

∣∣(A]
n)s
∣∣ dy

) 1
2 (∫

ω
An∇un · ∇un + A−1

n ∇v · ∇v dx

) 1
2

= o
(
ε−1
n

)
.

(3.15)

To get (3.12) we need to prove that the sequence An∇un · ∇zλ
n converges to zero in D′(Ω). To this

end consider ϕ ∈ ∞
c (Ω). Integrating by parts we deduce from (3.14) and (3.11) the equality∫

ω
An∇un · ∇zλ

n ϕ dx =
∫

ω
∇v · ∇zλ

n ϕ dx +
∫

ω
ũn J∇zλ

n · ∇ϕ dx =
∫

ω
ũn J∇zλ

n · ∇ϕ dx + o(1). (3.16)

Let Qn ⊂ ω be a covering of supp ϕ by the squares εn(k+Y ), k ∈ Kn ⊂ Z2, and let ūn be the piecewise
constant function defined by

ūn :=
∑

k∈Kn

(
−
∫

εn(k+Y )
ũn

)
1εn(k+Y ). (3.17)

Following the procedure of [5], let us prove that ūn − ũn strongly converges to 0 on suppϕ. By the
Sobolev imbedding of W 1,1 in L2 in each square εn(k+Y ), k ∈ Kn, (note that the following imbedding
constant C is independent of the squares) combined with the Poincaré-Wirtinger inequality, and by
the Cauchy-Schwarz inequality we have∫

εn(k+Y )
(ūn − ũn)2 dx ≤ C

(∫
εn(k+Y )

|∇ũn| dx

)2

≤ C

∫
εn(k+Y )

∣∣Ã−1
n

∣∣ dx

∫
εn(k+Y )

Ãn∇ũn · ∇ũn dx.

(3.18)

Then, summing over k ∈ Kn we get similarly to (3.15)∫
Qn

(ūn − ũn)2 dx ≤ c ε2
n

∫
Y

det A]
n

det(A]
n)s

∣∣(A]
n)s
∣∣ dy

∫
ω

(
An∇un · ∇un + A−1

n ∇v · ∇v
)
dx, (3.19)

which tends to 0 by (2.18). Therefore, we can replace ũn by ūn in (3.16). Now, consider the approx-
imation of ∇ϕ by a function Φ̄n constant in each square εn(k + Y ) and such that |∇ϕ − Φ̄n| ≤ c εn.
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Then, since ∇Vn − λ has a zero Y -average, the last term of (3.16) reads as∫
ω

ũn J∇zλ
n · ∇ϕ dx =

∫
ω

ūn J∇zλ
n · Φ̄n dx +

∫
ω

ūn J∇zλ
n · (∇ϕ− Φ̄n) dx + o(1)

=
∫

ω
ūn J∇zλ

n · (∇ϕ− Φ̄n) dx + o(1).

Using |∇ϕ− Φ̄n| ≤ c εn, estimate (3.15) and the one of (3.10), we also have∣∣∣∣ ∫
ω

ūn J∇zλ
n · (Φ̄n −∇ϕ) dx

∣∣∣∣ ≤ c εn

∫
Qn

|ūn| |∇zλ
n| dx

= c εn

∫
Y
|∇V λ

n − λ| dy

∫
Qn

|ūn| dx

≤ c εn

∫
ω
|ũn| dx = o(1).

The two previous estimates combined with (3.16) conclude the first step.

Second step : Proof of (3.13).
Following the first step and taking into account that (A]

n)T∇V λ
n is a periodic divergence free function,

we may define the periodic stream function Ṽ λ
n ∈ H1

#(Y ) by∫
Y

Ṽ λ
n dy = 0 and (A]

n)T∇V λ
n =

∫
Y

(A]
n)T∇V λ

n dy + J∇Ṽ λ
n = (A∗

n)T λ + J∇Ṽ λ
n , (3.20)

where the second equality is a consequence of (3.10). Proceeding similarly to (3.18) and (3.19), we
have by the equality Ã]

n = J−1
[
(A]

n)−1
]s

J and estimates (2.18), (3.10),∫
Y

(Ṽ λ
n )2 dy ≤

∫
Y

det A]
n

det(A]
n)s

∣∣(A]
n)s
∣∣ dy

∫
Y

[
(A]

n)T∇V λ
n · ∇V λ

n + (A]
n)−1(A∗

n)T λ · (A∗
n)T λ

]
dy = o

(
ε−2
n

)
,

hence the sequence ṽλ
n(x) := εnṼ λ

n ( x
εn

) strongly converges to 0 in L2(Ω). Let ϕ ∈ C∞
c (Ω). Therefore,

using the second equality of (3.20) and integrating by parts we get∫
Ω

An∇un · ∇vλ
n ϕ dx =

∫
Ω
∇un ·AT

n∇vλ
n ϕ dx =

∫
Ω
∇un · (A∗

n)T λ ϕ dx +
∫

Ω
∇un · J∇ṽλ

n ϕ dx

=
∫

Ω
A∗

n∇un · λ ϕ dx +
∫

Ω
ṽλ
n J∇un · ∇ϕ dx

=
∫

Ω
A∗∇u · λ ϕ dx + o(1),

which yields (3.13).

Proof of the part ii) of Theorem 2.7. Set Bn := J−1A−1
n J and B]

n := J−1(A]
n)−1J . Let B∗

n be
the constant matrix defined by formula (2.16) with the matrix-valued function B]

n. By the classical
duality formula due to Dykhne [11] (see also [13]) we have B∗

n = J−1(A∗
n)−1J , where A∗

n is given
by (2.16). Therefore, the sequence B∗

n converges to B∗ := J−1(A∗)−1J , where A∗ is the limit of A∗
n.

On the other hand, for any periodic function V ∈ H1
#(Y ) with Y -average V̄ , the Sobolev imbedding

of W 1,1
# (Y ) into L2

#(Y ) combined with the Poincaré-Wirtinger inequality in Y , the Cauchy-Schwarz
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inequality and equality (2.14) with B]
n, imply that∫

Y
(V − V̄ )2 dy ≤ c

(∫
Y
|∇V | dy

)2

≤ c

(∫
Y

∣∣∣[(B]
n)s
]− 1

2

∣∣∣ ∣∣∣[(B]
n)s
] 1

2∇V
∣∣∣ dy

)2

≤ c

(∫
Y

∣∣∣[(B]
n)s
]−1
∣∣∣ dy

)∫
Y

(B]
n)s∇V · ∇V dy

= c

(∫
Y

det A]
n

det(A]
n)s

∣∣(A]
n)s
∣∣ dy

)∫
Y

B]
n∇V · ∇V dy.

This, combined with (2.18), yields the following estimate of the weighted Poincaré-Wirtinger inequality

sup
V ∈H1

#(Y ), V 6=V̄


∫

Y
(V − V̄ )2 dy∫

Y
B]

n∇V · ∇V dy

 ≤ Cn with lim
n→+∞

ε2
n Cn = 0. (3.21)

In the symmetric case Bn = Bs
n, the first author proved in [7] that, under the L2(Ω)-boundedness of

any solution vn of −div (Bn∇vn) = f ∈ L2(Ω), estimate (3.21) is a sufficient condition to obtain the
Hw-convergence of Bn to B∗. This compactness result can be easily extended (see [20] for details) to
the non-symmetric case assuming that An and AT

n satisfy condition (2.7), or equivalently Bn and BT
n

satisfy (2.11). Therefore, the Hw-convergence (2.20) holds true since

Bn =
AT

n

det An
and B∗ =

AT
∗

det A∗
,

which concludes the proof.

Acknowledgement. The authors wish to thank F. Murat for a remark which motivated this work.

References

[1] E. Acerbi, V. Chiado Piat, G. Dal Maso & D. Percivale, “An extension theorem from
connected sets, and homogenization in general periodic domains”, Nonlinear Analysis T.M.A.,
18 (5) (1992), 481-495.

[2] G. Allaire & F. Murat, “Homogenization of the Neumann problem with non-isolated holes”,
Asymptotic Anal., 7 (2) (1993), 81-95.

[3] M. Bellieud & G. Bouchitté, “Homogenization of elliptic problems in a fiber reinforced
structure. Non local effects”, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. IV, 26 (3) (1998), 407-436.

[4] A. Bensoussan, J.L. Lions & G. Papanicolaou, Asymptotic Analysis for Periodic Structures,
Studies in Mathematics and its Applications , North-Holland Publ. Comp., Amsterdam 1978.

[5] M. Briane, “Nonlocal effects in two-dimensional conductivity”, Arch. Rat. Mech. Anal., 182 (2)
(2006), 255-267.

[6] M. Briane, “Homogenization of high-conductivity periodic problems: application to a general
distribution of one-directional fibers”, SIAM J. Math. Anal., 35 (1) (2003), 33-60.

[7] M. Briane, “Optimal conditions of convergence and effects of anisotropy in the homogenization
of non-uniformly elliptic problems”, Asymptotic Analysis, 25 (2001), 271-297.

[8] M. Briane & J. Casado-D́ıaz, “Two-dimensional div-curl results. Application to the lack of
nonlocal effects in homogenization”, to appear in Com. Part. Diff. Equ.

12



[9] M. Briane & J. Casado-D́ıaz, “Asymptotic behaviour of equicoercive diffusion energies in
dimension two”, to appear in Cal. Var. PDE’s.

[10] M. Camar-Eddine & P. Seppecher, “Closure of the set of diffusion functionals with respect
to the Mosco-convergence”, Math. Models Methods Appl. Sci., 12 (8) (2002), 1153-1176.

[11] A.M. Dykhne, “Conductivity of a two-dimensional two-phase system”, A. Nauk. SSSR, 59
(1970), 110-115. English translation in Soviet Physics JETP, 32 (1971), 63-65.

[12] V.N. Fenchenko & E.Ya. Khruslov, “Asymptotic of solution of differential equations with
strongly oscillating matrix of coefficients which does not satisfy the condition of uniform bound-
edness”, Dokl. AN Ukr.SSR, 4 (1981).

[13] G. Francfort & F. Murat, “Optimal bounds for conduction in two-dimensional, two-phase,
anisotropic media”, Non-Classical Continuum Mechanics: Proceedings of the London Mathe-
matical Society, Symposium, Durham, July 1986, R. J. Knops & A. A. Lacey ed., Cambridge
University Press 1987, 197-212.

[14] V. Girault & P.A. Raviart, Finite Element Approximation of the Navier-Stokes Equations,
Lecture Notes in Mathematics, ed. by A. Dold & B. Eckmann, 749, Springer-Verlag, Berlin
Heidelberg New York, 1979.

[15] V.V. Jikov, S.M. Kozlov & O.A. Oleinik, Homogenization of Differential Operators and
Integral Functionals, Springer-Verlag, Berlin 1994.

[16] J.B. Keller, “A theorem on the conductivity of a composite medium”, J. Mathematical Phys.,
5 (4) (1964), 548-549.

[17] E.Ya. Khruslov, “The asymptotic behavior of solutions of the second boundary value problem
under fragmentation of the boundary of the domain”, Math. USSR Sb., 35 (1979), 266-282.

[18] E.Ya. Khruslov, “Homogenized models of composite media”, Composite Media and Homoge-
nization Theory, ed. by G. Dal Maso and G.F. Dell’Antonio, in Progress in Nonlinear Differential
Equations and Their Applications, Birkhaüser 1991, 159-182.
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